Multivariate Data – More Overview

CS 4460 - Information Visualization Jim Foley

Last Revision – August 2016

Some Key Concepts – Quick Review

- Data Types
- Data Marks

Basic Data Types

- N-Nominal (categorical)
 Equal or not equal to other values
 Example: gender
- O-Ordinal
 - Obeys < relation, ordered set
 - Example: freshman, sophomore, junior, senior
- Q-Quantitative
 - Can do math, equal intervals
 - Examples: distance, weight, temperature, population count, your age

J. Foley

Data Marks

- Data Marks are visual primitives in 2D or 3D space
 - Points
 - Lines
 - Areas
 - Volumes
- Graphical Properties of Data Marks encode variables
 - Size
 - Shape
 - Color (HSV)
 - Orientation
 - Texture
 - Border
 - Thickness
- Information Presentations are built up of Data Marks

||||/

Data Type Implies Mark Type

Data Type: Ordinal & Quantitative

Data Type: Nominal

Fig 5.1, *Visualization Analysis and Design*, Munzer, 2014

J. Foley

Information Visualization

More Data Marks

From http://blog.visual.ly/45-ways-to-communicate-two-quantities/

How Many Ways to Visualize Multivariate Data?

- Limited only by our imagination and creativity
- Here are some of the more common
- Following examples generally do not include geo-coded or time-coded data – more on that later

Pie Charts

- What data types are most commonly depicted with pie charts?
 - Identification of each slice what data type?
 - Size of each slice what data type?
- How well do pie charts scale with # of variables?
 - Angle
 - Color (H, S, V)
 - Height
 - Texture
- Would pie chart with 4 variables be useful?

Hypervariate Data N > 3

Ś

- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
 - line graphs, bar graphs, scatter plots OK
 - We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?
 - Often the interesting, challenging ones
 - Could use *additional* data mark properties to encode *additional* data variables.

Show the relationships between variables' values in a data table

Show the relationships between variables' values in a data table

The Data Table

Region	Quarter	Sales
East	1	20
East	2	28
East	3	88
East	4	20
West	1	30
West	2	38
West	3	36
West	4	31
North	1	45
North	2	46
North	3	44
North	4	43

Gallery of Bar Charts

 $_{\text{CS}\ 4460}\text{How}$ many variables and cases?

Clustered

Small Multiples: Star Plot N>3

AMC CONCORD AMC PACER AMC SPIRIT AU DI 5000 AUDIFOX 8**MW** 37201 BUICK CENTURY BUICK ELECTRA BUICK LE SABRE BUICK OPEL BUICK REGAL BUICK RIVIERA BUICK SKYLARK CAD. DEVILLE CAD. ELDORADO CAD. SEVILLE N = 10; Car type + 9 data items

1979 AUTOMOBILE ANALYSIS

N = 4 (5 if include case index/number); created at

http://www.wessa.net/rwasp_starplot.wasp

How well scale with # cases? # variables?

Small Multiples

http://www.economist.com/blogs/graphicdetail/ 2016/07/daily-chart-19

It's always sunny in Philadelphia Sentiment in United States party-convention speeches - Republicans Number of positive/negative words per line Trend: — Democrats ★ Became President Dukakis Bush Snr B. Clinton Bush Snr B. Clinton Carter Mondale Reagan Reagan Dole 1980 1988 1984 1992 1996 POSITIVE **NEGATIVE** Obama H. Clinton Gore Bush Jnr Bush Jnr Obama McCain Kerry Romney Trump 10 2004 2012 2000 2008 * 2016 NEGATIVE Sources: The American Presidency Project; press reports; The Economist 16 CS 4460

Many Ways to Present Same Data

Doing simple ad hoc analysis, % mean Doing moderately complex ad hoc analysis, % mean Doing complex ad hoc analysis, % mean Doing predictive analytics, % mean

Monitoring scorecards, % mean

See in detail on next PPts

Doing predictive analytics, % mean

Monitoring scorecards, % mean

How BI Customers Use Their Platforms

Small Multiples – two Variations

How BI Customers Use Their Platforms

Percentage of Users (each panel = 70%)

Small multiple for each of 4 SW platforms CS 4460

How BI Customers Use Their Platforms

Small multiple for each of 8 uses

How BI Customers Use Their Platforms

LS 440U

Marks Instead of Bars

Sparklines

	А	В	С	D	E	F	G	Н
1	Salesperson	May	June	July	Aug.	Sept.	Oct.	
2	Albertson, Kathy	\$3,947.00	\$557.00	\$3,863.00	\$1,117.00	\$8,237.00	\$8,690.00	\sim
3	Allenson, Carol	\$4,411.00	\$1,042.00	\$9,355.00	\$1,100.00	\$10,185.00	\$18,749.00	\sim
4	Altman, Zoey	\$2,521.00	\$3,072.00	\$6,702.00	\$2,116.00	\$13,452.00	\$8,046.00	\sim
5	Bittiman, William	\$4,752.00	\$3,755.00	\$4,415.00	\$1,089.00	\$4,404.00	\$20,114.00	
6	Brennan. Michael	\$4.964.00	\$3.152.00	\$11.601.00	\$1.122.00	\$3.170.00	\$10,733.00	\mathcal{N}
7	Carlson, David	\$2,327.00	\$4.056.00	\$3,726.00	\$1,135.00	\$8.817.00	\$18,524,00	_/
8	Collman, Harry	\$3,967,00	\$4,906.00	\$9.007.00	\$2,113,00	\$13,090.00	\$13,953,00	\sim
9	Counts Elizabeth	\$4,670,00	\$521.00	\$4 505 00	\$1,024,00	\$3 528 00	\$15 275 00	· ·
10	David Chlog	\$2,279.00	\$3 428 00	\$2,972.00	\$1,716.00	\$4,829,00	\$12,085,00	/
11	Davis, William	\$5,373.00	\$1,562,00	\$3,575.00	\$1,710.00	\$9,633.00	\$12,714.00	
12	Dumlao, Richard	\$3,275.00	\$2,779.00	\$7,549,00	\$1,101.00	\$5,850.00	\$15,065,00	\sim

"Magic Quadrant"

Magic Quadrant

How many variables? \rightarrow How many columns in table? ⇒Any ancillary information

Figure 1. Magic Quadrant for Business Intelligence and Analytics Platforms

Given this data table

	V1	V2	V3	V4	V5	
D1	7	3	4	8	1	
D2	2	7	6	3	4	
D3	9	8	1	4	2	

Encode variables V1, V2, etc along horizontal row

Vertical line specifies different values that variable can take

Data points (D1, D2, etc) represented as polyline

How differ from star plot?

Automobile Data in Parallel Coords

Automobile Data in Scatterplot Matrix

Small multiples: each pair of variables in scatterplot

How compare with parallel coordinates Seeing trends? Scale with # variables? Scale with # cases?

Takeaways – what are they?

- Work with a neighbor to write down three key points
- Now share them with other neighbors

Some Key Points

Ś

- Data types & marks
- Lots of ways to vis multivariate data
- Questions to ask about any vis
 - How many variables, what data types?
 - How many cases
 - How effective?
 - Absolute terms Relative to alternatives
 - How does it scale up
 - # cases
 - # variables