Multivariate Data - More Overview

CS 4460 - Information Visualization
Jim Foley

Last Revision - August 2016

Some Key Concepts - Quick Review

Data Types
Data Marks

Basic Data Types

- N-Nominal (categorical)

Equal or not equal to other values
Example: gender
O-Ordinal
Obeys < relation, ordered set
Example: freshman, sophomore, junior, senior
Q-Quantitative
Can do math, equal intervals
Examples: distance, weight, temperature, population count, your age

Data Marks

- Data Marks are visual primitives in 2D or 3D space
- Points .
- Lines
- Areas
- Volumes

- Graphical Properties of Data Marks encode variables
- Size \square
- Shape
- Color (HSV)
- Orientation
- Texture
- Border
- Thickness //l/
- Information Presentations are built up of Data Marks

J. Foley

Data Type Implies Mark Type

Data Type: Ordinal \& Quantitative

M Magnitude Channels: Ordered Attributes
Position on common scale
Position on unaligned scale
Length (1D size)
Tilt/angle
Area (2D size)
Color luminance
Color saturation
Curvature position)
Volume (3D size)
\square

Data Type: Nominal

Θ Identity Channels: Categorical Attributes
Spatial region
Color hue

Motion

Shape

More Data Marks

75

2

58

0

θ

From http://bfor, 446flal.ly/45-ways-to-communicate-two-quantities/

How Many Ways to Visualize Multivariate Data?

- Limited only by our imagination and creativity
- Here are some of the more common
- Following examples generally do not include geo-coded or time-coded data more on that later

Pie Charts: Usually Bivariate (N=2)

May 2010 Sales

How well do pie charts scale with cases?

Pie Charts

What data types are most commonly depicted with pie charts?

- Identification of each slice - what data type?
- Size of each slice - what data type?
- How well do pie charts scale with \# of variables?
- Angle
- Color (H, S, V)
- Height
- Texture
- Would pie chart with 4 variables be useful?

Hypervariate Data $\mathrm{N}>3$

- Number of well-known visualization techniques exist for data sets of 1-3 dimensions
- line graphs, bar graphs, scatter plots OK
- We see a 3-D world (4-D with time)
- What about data sets with more than 3 variables?
- Often the interesting, challenging ones
- Could use additional data mark properties to encode additional data variables.

Bar Chart

Show the relationships between variables' values in a data table

How many variables in the multivariate table?

Bar Chart

Show the relationships between variables' values in a data table

What are their types?
Region - Nominal
Sales - Ratio
Quarter - Ordinal

How many cases?

12

The Data Table

Region	Quarter	Sales
East	1	20
East	2	28
East	3	88
East	4	20
West	1	30
West	2	38
West	3	36
West	4	31
North	2	45
North	3	46
North	4	44
North	2	

Gallery of Bar Charts

Clustered Bar Chart

How many variables and cases?

Small Multiples：Star Plot N＞3

Starplot

AMC CONCORD	1975 AUTOMO日ILE ANALYSIS		
	AHC PACER	HMC 8PIRT	MUDI
HUDIFOX	日MW	BUKKCENTURY	BUKK ELECTRA
BUICK LE SkRRE	BUICK $O P E L$	EUKCK REGAL	BUCK RWIERA
BUKKK SKYLARK	CND．DEVILLE	ChL．ELORADO	CND．SEVILLE
$\mathbf{N}=1$	Car typ	$+9 \text { dat }$	却s

$\mathrm{N}=4$（5 if include case index／number）； created at
http：／／www．wessa．net／rwasp starplot．wasp
How well scale with \＃cases？
\＃variables？

Small Multiples

Many Ways to Present Same Data

See infdetail on next PPts

How Many Variables?

How BI Customers Use Their Platforms

Small Multiples - two Variations

Small multiple for each of 4 SW platforms

CS 4460

How BI Customers Use Their Platforms

Small multiple for each of 8 uses

How BI Customers Use Their Platforms

	Tableau	Qliktech	Oracle	Tibco	
Using parameterized reports					
Viewing static management reports					
Doing simple ad hoc analysis					
Monitoring scorecards					\cdots
Using personalized dashboards					
Doing intermediate ad hoc analysis					
Doing complex ad hoc analysis					
Doing predictive analysis					
	Jaspersoft	LogiXML	IDS Scheer	Board	
Using parameterized reports					
Viewing static management reports					
Doing simple ad hoc analysis					
Monitoring scorecards					
Using personalized dashboards					
Doing intermediate ad hoc analysis					
Doing complex ad hoc analysis				-	
Doing predictive analysis	1				-ค Prenc
	Infor	Targit	Panorama	ArcPlan	
Using parameterized reports					
Viewing static management reports					
Doing simple ad hoc analysis					
Monitoring scorecards					4 N
Using personalized dashboards					
Doing intermediate ad hoc analysis				-	
Doing complex ad hoc analysis		-			1
Doing predictive analysis	1		\square		
	SAS	Microsoft	MicroStrategy	Information Builders	
Using parameterized reports					
Viewing static management reports					
Doing simple ad hoc analysis					
Monitoring scorecards				-	
Using personalized dashboards	\square	\square			
Doing intermediate ad hoc analysis					
Doing complex ad hoc analysis		-	\square	\square	
Doing predictive analysis	-	\square			
	IBM	SAP	Actuate		
Using parameterized reports					
Viewing static management reports					
Doing simple ad hoc analysis Monitoring scorecards		\square	\square		
Using personalized dashboards		-	$\underline{\square}$		
Doing intermediate ad hoc analysis					
Doing complex ad hoc analysis	\square	\square	-		
Doing predictive analysis	-	\square	1		
		Percentag	(each panel =		

Marks Instead of Bars

Sparklines

	A	B	C	D	E	F	G	H	
1	Salesperson	May	June	July	Aug.	Sept.	Oct.		
2	Albertson, Kathy	\$3,947.00	\$557.00	\$3,863.00	\$1,117.00	\$8,237.00	\$8,690.00		
3	Allenson, Carol	\$4,411.00	\$1,042.00	\$9,355.00	\$1,100.00	\$10,185.00	\$18,749.00		
4	Altman, Zoey	\$2,521.00	\$3,072.00	\$6,702.00	\$2,116.00	\$13,452.00	\$8,046.00		
5	Bittiman, William	\$4,752.00	\$3,755.00	\$4,415.00	\$1,089.00	\$4,404.00	\$20,114.00		
6	Brennan, Michael	\$4,964.00	\$3,152.00	\$11,601.00	\$1,122.00	\$3,170.00	\$10,733.00		
7	Carlson, David	\$2,327.00	\$4,056.00	\$3,726.00	\$1,135.00	\$8,817.00	\$18,524.00		
8	Collman, Harry	\$3,967.00	\$4,906.00	\$9,007.00	\$2,113.00	\$13,090.00	\$13,953.00		
9	Counts, Elizabeth	\$4,670.00	\$521.00	\$4,505.00	\$1,024.00	\$3,528.00	\$15,275.00		
10	David, Chloe	\$3,379.00	\$3,428.00	\$3,973.00	\$1,716.00	\$4,839.00	\$13,085.00		
11	Davis, William	\$5,363.00	\$1,562.00	\$2,945.00	\$1,176.00	\$9,642.00	\$13,714.00		
12	Dumlao, Richard	\$3,275.00	\$2,779.00	\$7,549.00	\$1,101.00	\$5,850.00	\$15,065.00		

"Magic Quadrant"

Magic Quadrant
Figure 1. Magic Quadrant for Business Intelligence and Analytics Platforms

How many variables?

\Rightarrow How many columns in table?

Any ancillary information

Parallel Coordinates $\mathrm{N}>3$

Given this data table

$$
\begin{array}{lrrrrr}
& \mathrm{V} 1 & \mathrm{~V} 2 & \mathrm{~V} 3 & \mathrm{~V} 4 & \mathrm{~V} 5 \\
\cline { 2 - 6 } \text { D1 } & 7 & 3 & 4 & 8 & 1 \\
\text { D2 } & 2 & 7 & 6 & 3 & 4 \\
\text { D3 } & 9 & 8 & 1 & 4 & 2
\end{array}
$$

Parallel Coordinates

Parallel Coordinates

(2) V2

Parallel Coordinates

V1 V2

Parallel Coordinates

Encode variables V1, V2, etc along horizontal row

Vertical line specifies different values that variable can take

Data points (D1, D2, etc) represented as polyline

How differ from star plot?

Automobile Data in Parallel Coords

Automobile Data in Scatterplot Matrix

Small multiples: each pair of variables in scatterplot

How compare with parallel coordinates
Seeing trends?
Scale with \# variables?
Scale with \# cases?

Takeaways - what are they?

Work with a neighbor to write down three key points

Now share them with other neighbors

Some Key Points

- Data types \& marks
- Lots of ways to vis multivariate data
- Questions to ask about any vis
- How many variables, what data types?
- How many cases
- How effective?

Absolute terms
Relative to alternatives

- How does it scale up
\# cases
\# variables

