Trees aka Hierarchies

CS 4460 - Information Visualization Jim Foley

- Some PPts courtesy John Stasko
- Last Updated September 2016

Trees (aka as Hierarchies)

- Formal Definition
 - A directed acyclic graph AND
 - All nodes have in-degree one EXCEPT FOR
 - One distinguished node called the root
- Leaf node
 - Out degree = 0
- Binary tree
 - Out degree maximum = 2

Hierarchies/Trees in the World

- Pervasive
 - Family histories, ancestries
 - File/directory systems on computers
 - Organization charts
 - Animal kingdom: Phylum,..., genus,...
 - Object-oriented software classes

_ ...

Attributes

In addition to structure, trees often have

- Attributes (information, variables, ...)
 - On links
 - On nodes

Such as

Visualizing Trees – Four Methods

- Node-link
- Space-filling
- Connectivity matrix
 - For this case, a 12x12 binary matrix (12 nodes in tree)
- Indented list
- Many many more, see
 - http://www.informatik.uni-rostock.de/~hs162/treeposter/poster.html

Node-Link Diagrams

Typically drawn with root at top, leaves at bottom

Indented List

Good for?

Maybe for search

Bad for?
Structure
Why?

Given a Tree, what Questions?

- Useful to think about questions one would want to ask about a tree.
- Some tree visualizations better for some questions than others

- What questions might you ask?
- Confer in small groups; write down 4 questions

Typical Tree Questions (aka Tasks)

- Find a node whose name is X...
- Find a node that has properties x, y and z
- Find identical subtrees
- Find the deepest node (furthest away from root)
- Determine the parent of node x
- Determine grandparent of node x
- Determine the names of all nodes on path from node x to the root
- Determine depth of node x from root
- Find node with largest out-degree (for example, in org chart a large out-degree is problematical; parent with largest number of children)
- Is the tree balanced?

Note That

- Algorithms can accomplish some of these tasks
- Algorithms could be invoked by user in context, such as "find other subtrees identical to this one"
- Node-link diagrams show structure quite well, multiple attributes not as well
 - Need large nodes to encode multiple attributes, which limits number of nodes that can be seen

For Each Tree InfoVis, Consider

- How well Tree Tasks can be performed with each one
- How well they scale up to larger trees
 - Broader (higher out-degree)
 - Deeper
 - Broader and deeper
 - More attributes for each node
 - More attributes for each link
- How well they provide big picture and detail
- Recognize that displaying BIG trees is not so easy

Varieties of Node-Link InfoVis's

- Collapsing
 - Aka Degree of Interest Trees (DoIT)
- Hyperbolic

Collapsing (DoIT) Trees

- Use focus + context to limit how much of a tree is shown
- SpaceTree
 - Earlier lecture

 A similar d3 example

Grosjean, Plaisant, Bederson - InfoVis '02

http://bl.ocks.org/robschmuecker/7880033

DoIT Approach

- Combine multiple ideas:
 - Expanded DOI computation
 - Logical filtering to elide nodes
 - Geometric scaling
 - Semantic scaling
 - Clustered representation of large unexpended branches
 - Animated transition

DoIT Example Operations

1. Display of a uniform tree of 4 levels

2. Same table with focus on Node 3

3. Same tree expanded down to a leaf node

DoIT Better View of Org Chart

Organization chart with over 400 nodes accessible over WWW through Web browser

Hyperbolic Tree Browser

- Focus + Context Technique
 - Detailed view blended with a global view
- First lay out the hierarchy on the hyperbolic plane
- Then map this plane to a disk
- Start with the tree's root at the center
- Demo
 - https://philogb.github.io/jit/static/v20/Jit/Examples/Hypertree/example1.html

Node-link Shortcoming

- Can encode multiple node attributes (DoIT, for instance) information for a few nodes, but not for many or all nodes
 - Run out of space
- At best, can visually encode a few node attributes using, for example
 - Color
 - Size
 - ...but all quickly clash with basic node-link structure

A Space-Filling Representation

Each item occupies an area

Children are "contained" under parent

One example

Treemaps: Another Representation

- Space-filling representation developed by Shneiderman and Johnson, Vis '91
- Children are drawn inside their parent
- Alternate horizontal and vertical slicing at each successive level
- Use area to encode one node attribute
 - Color can encode another attribute

Example

Example

Example

Example – add two more nodes

Applications

- Especially useful when sum of areas at each level has a meaning
 - File directory disk space used
 - Stock market market valuation or trading volume
 - Product sales units sold, or \$\$ cost or profit
 - Software data source code size, bug counts
 - What else?????

Map of the Market – Market Cap

https://finviz.com/map.ashx

Map of the Market

Smart Money Select Upgrade here to access the Market Map 1000 and search 1,000 companies with enhanced capabilities.

Treemap Affordances

- Good representation of two attributes beyond node-link: color and area
- Not as good at representing structure
 - What happens if it's a perfectly balanced tree of items all the same size?
 - Also can get long-thin aspect ratios
 - Borders help on smaller trees, but take up too much area on large, deep ones
- What about link attributes?

Circle Packing

Figure 5. Pack circles into a circle recursively

(a) User interface and the overview of "D:\MyInfor"

(b) The details of the focus "MyInfor\Document\MyDoc"

(c) 3D nested cylinders and spheres

SunBurst

SunBurst

- Root directory at center, each successive level drawn farther out from center
- Sweep angle of item corresponds to size
- Color maps to file type or age
- Interactive controls for moving deeper in hierarchy, changing the root, etc.
- Double-click on directory makes it new root
 - d3 example: http://bl.ocks.org/kerryrodden/477c1bfb081b783f80ad
- Different idea http://bl.ocks.org/kerryrodden/7090426

www.groxis.com - dead link

Grokker

Zoomology

CS 7450 Spring '03 project

InfoVis '03 Contest Winner Best Student entry

Alternate View

Four Varieties of Space-Filling

35								
9			20				6	

Treemap and Sunburst

Treemap

Sunburst

Treemap and Sunburst

Treemap

Treemap and Sunburst Pros/Cons

Treemap

- Unbalanced deep tree does NOT cause upper levels of tree to become small; does cause low-level nodes to become veryyy small
- Lower levels of deep tree hard to see
- Quantity encoded by area easier to compare
- Uses full area no matter how wide or deep or unbalanced tree may be
- Small areas hard to judge

Sunburst

- Unbalanced deep tree causes upper levels (rings) to become narrow
- All levels clearly shown by concentric rings
- Small areas hard to judge
- Quantity encoded by angle subtended – harder to compare

Summary

- Node-link diagrams or space-filling techniques?
- It depends on user tasks!!
 - Node-link typically better at exposing structure
 Essential if have link attributes
 - Space-filling good for focusing on one or two additional variables of cases
- Remember issue with link attributes
- Hybrids exist

Work With Your Neighbor

Go back to your set of tree questions

- For each question, which basic approach better
 - Node-link?
 - Space filled?